Determination of porosity of lignocellulosic biomass before and after pretreatment by using Simons' stain and NMR techniques.

نویسندگان

  • Xianzhi Meng
  • Marcus Foston
  • Johannes Leisen
  • Jaclyn DeMartini
  • Charles E Wyman
  • Arthur J Ragauskas
چکیده

To further investigate the effect of dilute acid pretreatment (DAP) and steam explosion pretreatment (SE) on the change in cellulose accessibility, several techniques were applied including a Simons' stain (SS) technique along with several NMR methods (i.e., NMR cryoporometry, (1)H spin-lattice (T1) and (1)H spin-spin (T2) relaxometry, and diffusometry). These methods were utilized to probe biomass porosity and thus assess cellulose accessibility on untreated and pretreated Populus. In general, these techniques indicate that pretreated Populus has larger pore size distributions and specific surface area (SSA) when compared to an untreated sample. The SS method revealed that DAP is more effective than SE in terms of the SSA increase, and that DAP increases SSA as a function of pretreatment severity. Relaxometry and diffusion measurements also suggest pore expansion occurs primarily in the first 10 min of DAP.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Surfactant-Aided Phosphoric Acid Pretreatment to Enable Efficient Bioethanol Production from Glycyrrhiza Glabra Residue

Glycyrrhiza glabra residue (GGR) was efficiently subjected to concentrated phosphoric acid (PA) pretreatment with/without surfactant assistance, and promising results were obtained following separate enzymatic hydrolysis and fermentation (SHF) of the biomass. Pretreatment was carried out using 85 % PA either at 50 or 85 °C with 12.5 % solid loading for 30 min. In parallel experiments, ...

متن کامل

Microwave-based alkali pretreatment of switchgrass and coastal bermudagrass for bioethanol production.

Switchgrass and coastal bermudagrass are promising lignocellulosic feedstocks for bioethanol production. However, pretreatment of lignocelluloses is required to improve production of fermentable sugars from enzymatic hydrolysis. Microwave-based alkali pretreatment of switchgrass and coastal bermudagrass was investigated in this study. Pretreatments were carried out by immersing the biomass in d...

متن کامل

Solid-state NMR characterization of switchgrass cellulose after dilute acid pretreatment

85 10.4155/BFS.09.17 © 2010 Future Science Ltd The development of low-cost, sustainable and low net carbon footprint renewable biofuels as a viable alternative to fossil fuels is a growing societal issue [1,2,101]. Fuels derived from lignocellulosic biomass, such as woody plants, forest residues and nonfood agroenergy crops are a viable alternative to fossil fuels and food-based biofuels [3–6]....

متن کامل

Pretreatment of Lignocellulosic Biomass Using Green Ionic Liquids

Abstract Bioenergy is a critical part of renewable energy solution to today’s energy crisis that threatens world economic growth. Corn ethanol has been growing rapidly in the past few years. Policy-makers and researchers alike are becoming aware that corn ethanol has some serious drawbacks. It adversely impacts food prices and is harsh on soil fertility. Lignocellulosic ethanol on the other han...

متن کامل

Evaluation of four ionic liquids for pretreatment of lignocellulosic biomass

BACKGROUND Lignocellulosic biomass is highly recalcitrant and various pretreatment techniques are needed to facilitate its effective enzymatic hydrolysis to produce sugars for further conversion to bio-based chemicals. Ionic liquids (ILs) are of interest in pretreatment because of their potential to dissolve lignocellulosic materials including crystalline cellulose. RESULTS Four imidazolium-b...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Bioresource technology

دوره 144  شماره 

صفحات  -

تاریخ انتشار 2013